Birch & Swinnerton - Dyer Conjecture
Supported by much experimental evidence, this conjecture relates the number of points on an elliptic curve mod p to the rank of the group of rational points. Elliptic curves, defined by cubic equations in two variables, are fundamental mathematical objects that arise in many areas: Wiles' proof of the Fermat Conjecture, factorization of numbers into primes, and cryptography, to name three.
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home